六种可用于互联网金融风险控制的大数据来源

近年来,以第三方支付、P2P平台、众筹为代表的互联网金融模式引起了人们的广泛关注,该模式大量运用了搜索引擎、大数据、社交网络和云计算等技术,有效降低了市场信息不对称程度,大幅节省了信息处理的成本,让支付结算变得更便捷,达到了同资本市场直接融资、银行间接融资一样高的资源配置效率。但由于我国互联网金融出现的时间短,发展快,目前还没有形成完善的监控机制和信用体系,一旦现有互联网金融体系失控,将存在着巨大的风险。



 

首先是信用风险大。目前我国信用体系尚不完善,互联网金融的相关法律还有待配套,互联网金融违约成本较低,容易诱发恶意骗贷、卷款跑路等风险问题。特别是P2P网贷平台由于准入门槛低和缺乏监管,成为不法分子从事非法集资和诈骗等犯罪活动的温床。

其次是网络安全风险大。我国互联网安全问题突出,网络金融犯罪问题不容忽视。一旦遭遇黑客攻击,互联网金融的正常运作会受到影响。

互联网金融企业通过获得多渠道的大数据原料,利用数学运算和统计学的模型进行分析,从而评估出借款者的信用风险,典型的企业是美国的ZestFinance。其通过分析模型对每位信贷申请人的上万条原始信息数据进行分析,并得出超过数万个可对其行为做出测量的指标,而这一过程在5秒钟内就能全部完成。在进行数据处理之前,对业务的理解、对数据的理解非常重要,这决定了要选取哪些数据原料进行数据挖掘,在进入“数据工厂”之前的工作量通常要占到整个过程的60%以上。

目前,可被用于助力互联网金融风险控制的数据存在多个来源。

一、是电商大数据,以阿里巴巴为例,它已利用电商大数据建立了相对完善的风控数据挖掘系统,并通过旗下阿里巴巴、淘宝、天猫、支付宝等积累的大量交易数据作为基本原料,将数值输入网络行为评分模型,进行信用评级。

二、是信用卡类大数据,此类大数据以信用卡申请年份、通过与否、授信额度、卡片种类、还款金额等都作为信用评级的参考数据。国内典型企业是成立于2005年的“我爱卡”,它利用自身积累的数据和流量优势,结合国外引入的FICO(费埃哲)风控模型,从事互联网金融小额信贷业务。

三、是社交网站大数据,典型企业为美国的LendingClub,它基于社交平台上的应用搭建借贷双方平台,并利用社交网络关系数据和朋友之间的相互信任聚合人气,平台上的借款人被分为若干信用等级,但是却不必公布自己的信用历史。

四、是小额贷款类大数据,目前可以充分利用的小贷风控数据包括信贷额度、违约记录等。由于单一企业信贷数据的数量级较低、地域性较强,业内共享数据的模式已正逐步被认可。

五、是第三方支付大数据,支付是互联网金融行业的资金入口和结算通道,此类平台可基于用户消费数据做信用分析,支付方向、月支付额度、消费品牌都可以作为信用评级数据。

六、是生活服务类网站大数据,包括水、电、煤气、物业费交纳等,此类数据客观真实地反映了个人基本信息,是信用评级中一种重要的数据类型。

(责任编辑:管理员)

分享到:

更多
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
  • 微笑/wx
  • 撇嘴/pz
  • 抓狂/zk
  • 流汗/lh
  • 大兵/db
  • 奋斗/fd
  • 疑问/yw
  • 晕/y
  • 偷笑/wx
  • 可爱/ka
  • 傲慢/am
  • 惊恐/jk
用户名: 验证码:点击我更换图片
资料下载专区
图文资讯

2016年软件即服务发展的五大主题

2016年软件即服务发展的五大主题

对于2016年软件即服务(SaaS)我并没有什么伟大的预言,也没有深邃的远见或是史诗般的猜...[详细]

从生产安全体系视角看数据安全

从生产安全体系视角看数据安全

互联网的发展一日千里,安全技术随着互联网的发展,出现的新场景、新技术、新名称都越...[详细]

RSA 2019大会最值得关注的10个网络安全趋势

RSA 2019大会最值得关注的10个网络安全趋势

RSA2019大会本周开幕,来自八家知名网络安全厂商的高官们谈到了他们期待在今年大会上...[详细]

Gartner:政府部门2019年将重点投资「数据

Gartner:政府部门2019年将重点投资「数据分析与网络安全」的技术

数字化转型时一场长期竞赛,2018年数字化转移面临的主要挑战是缺少用于支持数字化转型...[详细]

区块链正在应用于正在兴起的网络安全运动

区块链正在应用于正在兴起的网络安全运动

尽管有关加密货币和交易所的黑客和欺骗的新闻铺天盖地,但事实仍然是,真正的区块链在...[详细]

返回首页 返回顶部