安全领域中的大数据分析(3)

挑战

尽管在处理安全问题上,大数据分析应用程序的希望很显著,但我们必须提出几项挑战,从而去认识到它真正的潜力。在行业中分享数据,隐私特别重要,并且要避免违背数据重用的隐私原则法规,也就是说只能将数据用于收集它的目的。直到最近,隐私在很大程度上还取决于www.computer.org/security 75在抽取、分析和关联潜在敏感数据集能力上的技术局限性上。然而,大数据分析的发展为我们提供了抽取和关联这种数据的工具,让破坏隐私更容易了。因此,我们必须在了解隐私法规及推荐实践的情况下开发大数据应用程序。尽管在某些存在隐私法规的领域—比如说,在美国,美国联邦通信委员跟电信公司的合作,健康保险隐私及责任法案指出的医疗数据,几个州的公用事业委员会限制智能电网数据的使用,以及联邦贸易委员会正在制定Web活动的指导方针—所有这些活动都扩大了系统的覆盖范围,并且在很多情况下都会有不同的解读。即便有隐私法规在,我们也要懂得,那样大规模的数据收集和存储会吸引社会各界的关注,包括产业界(将我们的信息用在营销和广告上),政府(会强调这些数据对国家安全或法律执行很有必要)和罪犯(喜欢盗取我们的身份)。因此,作为大数据应用程序的架构师和设计者,我们要积极主动地创造出保障措施,防止对这些大数据库存的滥用。

另外一个挑战是数据出处的问题。因为大数据让我们可以扩充用于处理的数据源,所以很难判断出哪个数据源符合我们的分析算法所要求的可信赖度,以便能生产出准确的结果。因此,我们需要反思工具中所用数据的真实性和完整性。我们可以研究源自对抗性机器学习和稳健统计的思路,找出并减轻恶意插入数据的影响。

这个特别的CSA报告聚焦于大数据分析在安全方面的应用,但另一方面是用安全技术保护大数据。随着大数据工具不断被部署到企业系统中,我们不仅要利用传统的安全机制(比如在Hadoop内部集成传输层安全协议),还要引入新工具,比如Apache的Accumulo,来处理大数据管理中独有的安全问题。

最后,这个报告中还有一个没有覆盖到,但还需要进一步开发的领域,即人机交互,特别是可视化分析如何帮助安全分析人员解读查询结果。可视化分析是通过交互式可视化界面促进推理分析能力的科学。跟为了高效计算和存储而开发的技术机制相比,大数据中的人机交互受到的关注比较少,但它也是大数据分析达成“承诺”必不可少的基础工具,因为它的目标是通过最有效的展示方式将信息传达给人类。大数据正在改变着用于网络监测、SIEM和取证的安全技术景观。然而,在进攻和防守永远不会停歇的军备竞赛中,大数据不是万能的,安全研究人员必须不断探索新的方式来遏制老练的攻击者。大数据还会让维持控制个人信息的泄漏变成持续不断的挑战。因此,我们需要付出更多的努力,用保护隐私的价值观培育新一代的计算机科学家和工程师,并跟他们一起开发出设计大数据系统的工具,从而让大数据系统能遵循普遍认可的隐私准则。

(责任编辑:)

分享到:

更多
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
  • 微笑/wx
  • 撇嘴/pz
  • 抓狂/zk
  • 流汗/lh
  • 大兵/db
  • 奋斗/fd
  • 疑问/yw
  • 晕/y
  • 偷笑/wx
  • 可爱/ka
  • 傲慢/am
  • 惊恐/jk
用户名: 验证码:点击我更换图片
资料下载专区
图文资讯

开源发家史:Linux在为谁代言?

开源发家史:Linux在为谁代言?

开源,也被称为开放源代码(Open Source) 开源(Open Source) 开源运动起源于20实际60年...[详细]

作为码农,我们为什么要写作

作为码农,我们为什么要写作

在程序员这个行业,坚持做技术写作的人一直比较少。我和身边的朋友沟通后,发现他们除...[详细]

键盘敲击识别技术真的靠谱吗?

键盘敲击识别技术真的靠谱吗?

所有人都知道密码是靠不住的。于是现在有一个有意思的行为生物识别是你是如何打字的,...[详细]

干货!企业安全产品采购指南

干货!企业安全产品采购指南

作为一个安全行业的客户,怎么知道什么样的技术、产品和服务将会满足自身的需求?本文...[详细]

作为程序员,你必须了解这些关于计算机的知

作为程序员,你必须了解这些关于计算机的知识

存储-块设备,文件系统,集群文件系统,分布式文件系统,光纤SCSI,iSCSI,RAID等。 ...[详细]

返回首页 返回顶部